
Semantics of Exact Real Arithmetic

Peter John Potts Abbas Edalat Mart��n H�otzel Escard�o

Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK

fpjp,ae,mheg@doc.ic.ac.uk

Abstract

In this paper, we incorporate a representation of the
non-negative extended real numbers based on the com-
position of linear fractional transformations with non-
negative integer coe�cients into the Programming Lan-
guage for Computable Functions (PCF) with products.
We present two models for the extended language and
show that they are computationally adequate with re-
spect to the operational semantics.

1. Introduction

Real numbers are usually represented by �nite
strings of digits belonging to some digit set. The real
number representation speci�es a function that maps
strings to real numbers or real intervals with distinct
end-points. For example, IEEE 754 single precision

oating point consists of 32 binary digits [?].

However, �nite strings of digits can only represent
a limited subset of the real numbers exactly because
many real numbers have too many signi�cant dig-
its (such as � or

p
2) or are too large or too small.

This means that most real numbers are represented by
nearby real numbers or enclosing real intervals with
distinct end-points giving rise to the notion of round-
o� errors. This is generally accepted for a wide range
of applications. However, it is well-known that the ac-
cumulation of round-o� errors due to a large number
of calculations can produce grossly inaccurate or even
incorrect results.

Alternatively, by allowing in�nite strings of digits
all the real numbers can be represented exactly. The
digits in an in�nite string are normally used to con-
struct a sequence of nested real intervals whose lengths
converge to zero. The intersection of these intervals is
a singleton set whose element is the real number being
represented.

Furthermore, basic arithmetic operations are only
computable if the representation is redundant. In other

words, there must be more that one representation for
every real number.

In the literature, there are broadly speaking three
frameworks for exact real computer arithmetic:

(i) In�nite sequences of linear maps proposed by
Avizienis [?] and appeared in the work of
Watanuki et al [?], Boehm an Cartwright [?],
Nielsen et al [?], Menissier-Morain [?], Di Gianan-
tonio [?] and Escard�o [?]. The last two authors
studied extensions of PCF with a real number data
type.

(ii) Continued fraction expansions proposed by
Gosper [?], developed by Peyton Jones [?] and
Vuillemin [?] and advanced more recently by
Kornerup et al [?, ?, ?, ?].

(iii) In�nite composition of linear fractional transfor-
mations (also known as homographies or M�obius
transformations) generalises the other two frame-
works as demonstrated by Vuillemin [?]. Nielsen
et al [?] showed that this framework can be used
to represent quasi-normalised
oating point [?].

Potts et al [?] have developed a framework for ex-
act real arithmetic in which the extended real numbers
are represented by the composition of linear fractional
transformations with either all non-negative or all non-
positive integer coe�cients. The advantage of linear
fractional transformations over linear maps is that the
numerous elegant continued fractions for various math-
ematical functions can be used almost directly [?, ?].

In this paper, we incorporate this representation into
the Programming Language for Computable Functions
(PCF) with products described by Gunter [?]. This in-
cludes adding a new ground type for non-negative ex-
tended real numbers and an associated transformation
term constructor to the grammar and also an opera-
tional semantics for program evaluation. This means
that a program induced by a mathematically proved
algorithm always produces the correct result.

1

We then present two models for the extended lan-
guage and show that they are computationally ade-
quate with respect to the operational semantics.

This paper con�rms the domain-theoretic approach
also used by Di Gianantonio [?] and Escard�o [?] for the
semantics of real number computation.

In sections 2, 3 and 4 we review the basic framework
for exact real arithmetic by Potts et al [?, ?, ?]. In
section 5 we present the basic notions of domain theory
that we need in this paper. In section 6 we introduce
the Language for Positive Reals, in section 7 we present
the denotational model and �nally in section 8 we prove
the computational adequacy of the language.

2. Linear Fractional Transformations

A natural way to represent a real number, r
say, is by a sequence of nested rational intervals
f[pn; qn] : n 2 Ng enclosing r such that the sequence
of interval lengths converges to zero [?, ?]:

[p0; q0] � [p1; q1] � [p2; q2] � [p3; q3] � � � �
Let R denote the set of real numbers with the Eu-

clidean topology, R1 the one point compacti�cation of
R and R+ the one point compacti�cation of the non-
negative real numbers [0;1). The closed intervals [a; b]
in R1 are de�ned as the points from a to b in the nu-
merically increasing direction, possibly including 1.
For example, the closed interval [1;�1] is the comple-
ment of the open interval (�1; 1).

Let us make the following convenient de�nitions:

V =

��
a
b

�
: a 6= 0 or b 6= 0

�

M =

��
a c

b d

�
:

���� a c
b d

���� 6= 0

�

T =

��
a c e g
b d f h

�
:

���� ax+ e cx+ g
bx+ f dx+ h

����
and

���� ay + c ey + g
by + d fy + h

���� are non-trivial
�

Here

���� a c
b d

���� refers to the determinant of the matrix�
a c

b d

�
.

De�nition 2.1 A 0-dimensional linear fractional
transformation (lft) with real coe�cients is a fraction
in R1 , namely a homogeneous coordinate representa-
tion of an extended real number,

t� a
b

� =
a

b
(1)

where

�
a
b

�
2 V. A 1-dimensional lft with real coef-

�cients is a function from R1 to R1 with the general
form

t� a c

b d

�(x) = ax+ c

bx+ d
(2)

where

�
a c

b d

�
2 M . A 2-dimensional lft with real

coe�cients is a function from R1 � R1 to R1 with
the general form

t0
@ a c e g

b d f h

1
A
(x; y) =

axy + cx+ ey + g

bxy + dx+ fy + h
(3)

where

�
a c e g
b d f h

�
2 T. For convenience, we

will use the same notation for the maximal extension
of these functions.

Observe that a 1-dimensional lft of the form�
a c

0 d

�
(x) =

a

d
+
c

d
x

is a linear map. Hence, 1-dimensional lft's are general-
isations of linear maps.

In homogeneous coordinates, a 1-dimensional lft re-
duces to matrix multiplication

t� a c

b d

� : R1 ! R1

�
p
q

�
7!

�
ap+ cq
bp+ dq

�
:

Therefore, it is convenient to drop the t in Equa-
tions (1), (2) and (3), We will also refer to the coe�-
cients of a 0-dimensional lft as a vector, the coe�cients
of a 1-dimensional lft as a matrix and the coe�cients of
a 2-dimensional lft as a tensor. In general, we will use
the letters V to denote a vector, M and N to denote
matrices and T to denote a tensor.

De�nition 2.2 The information Info(P) contained
by an arbitrary lft P is the interval in R1 de�ned
by Info(V) = fV g, Info(M) = M(R+) and Info(T) =
T (R+ ;R+).

Consider a vector V as a pair of numbers denoted
(V0; V1), �

a
b

�
� (a; b)

and consider a matrix M as a pair of vectors denoted
(M0;M1), �

a c

b d

�
�
��

a
b

�
;

�
c
d

��

2

and consider a tensor T as a pair of matrices denoted
(T0; T1),�

a c e g
b d f h

�
�
��

a c

b d

�
;

�
e g

f h

��
:

Observe that for a matrix M =

�
a c

b d

�
, we have

Info(M) =

(�
a
b
; c
d

�
if det(M) < 0�

c
d
; a
b

�
if det(M) > 0

and for a tensor T =

�
a c e g
b d f h

�
, we have

Info(T) = Info

��
a c

b d

��
[Info

��
e g

f h

��

[Info
��

a e

b f

��
[Info

��
c g

d h

��
:

De�nition 2.3 An arbitrary lft P satis�es the re�ne-
ment property, denoted R(P), if the coe�cients of P
are all non-negative (or all non-positive but we will ig-
nore these since they are equivalent).

Let us de�ne V+ = fV 2 V : R(V)g, M + = fM 2
M : R(M)g and T+ = fT 2 T : R(T)g.

Observe that Info(P) � R+ if and only if P satis�es
the re�nement property.

Therefore, the composition Q�P of arbitrary lft's P
and Q where P satis�es the re�nement property corre-
sponds to interval re�nement. This is because, in this
case, Info(Q � P) � Info(Q). In other words, P re�nes
the information given by Q.

Note that for any rational interval
�
a
b
; c
d

�
con-

tained in R+ , we can �nd a matrix M such that

Info(M) =
�
a
b
; c
d

�
. For example, M =

�
a c

b d

�
or

M =

�
c a

d b

�
.

Proposition 2.4 Given two rational intervals I =
Info(M) and J = Info(N) represented by the two ma-
trices M and N , then I � J if and only if there exists
a matrix K with integer coe�cients satisfying the re-
�nement property such that M = NK.

Therefore any non-negative extended real number
can be represented as the intersection\

n�0

M0M1M2 : : :Mn(R
+)

for a sequence of matricesMn satisfying the re�nement
property. We can denote this real number by an in�nite
product of matrices�

a0 c0
b0 d0

�
:

�
a1 c1
b1 d1

�
:

�
a2 c2
b2 d2

�
: � � � (4)

where Mn =

�
an cn
bn dn

�
2 M + . We will call this

an in�nite normal product. This notion generalises the
concept of interval expansion [?] in which Mn is re-
stricted to a linear map. Notice however that an in-
�nite normal product does not in general represent a
point, although it always represents an interval. How-
ever, we are only interested in in�nite normal products
that converge to a point. A singular matrix is in fact
a constant that can be replaced by a vector, thus ter-
minating the product; this we will call a �nite normal
product. Thus, a �nite normal product represents a
rational number, whereas an in�nite normal product
may represent any number.

As mentioned above, an arbitrary lft is only unique
up to scaling. Hence, we can identify an lft with the
equivalence classes arising from the equivalence rela-
tion � induced by scaling. Let us denote by P �, the
lft P reduced to its lowest terms after division by the
greatest common divisor of the coe�cients. We can
then identify a unique lft P � in each equivalence class.

P � P � (5)

This gives a simple representation and a convenient
operational semantics for the lazy representation of the
reals: �nite segments of the matrix product in Equa-
tion (4) give incremental approximations to the real
number in question. In particular, the �rst matrix tells

us that the result is contained in the interval
h
a0
b0
; c0
d0

i
or
h
c0
d0
; a0
b0

i
depending on the sign of the determinant

of the matrix.

3. Arithmetic Operations

Gosper [?] devised algorithms for the basic arith-
metic operations on continued fractions [?] using 2-
dimensional lft's. The three most basic arithmetic op-
erations closed on R+ can be represented as follows:�

0 1 1 0
0 0 0 1

�
(x; y) = x+ y�

1 0 0 0
0 0 0 1

�
(x; y) = x� y�

0 1 0 0
0 0 1 0

�
(x; y) = x� y

3

Therefore, we need to be able to convert expressions
containing vectors, matrices and tensors into normal
products. In other words, we need to consider the input
of normal products into a tensor, which we shall call
tensor absorption, and the output of a normal product
from a tensor, which we shall call tensor emission.

In order to simplify composition of lft's of various
dimensions, we de�ne the dot product, the left product
and the right product, denoted respectively by �, L

f

and Rf as follows:

(M � V)i =
X
j=0;1

MijVj

(M �N) = (M �N0;M �N1)

(M � T) = (M � T0;M � T1)
T RfV = (T0 � V; T1 � V)
T R
fM = (T0 �M;T1 �M)

T LfV = TT RfV

T L
fM = (TT R

fM)T

where TT indicates the transpose of T de�ned by swap-
ping its middle two columns. Note that dot product is
just conventional matrix multiplication. Let us also
de�ne the mediant of a matrix by�

a c

b d

�
=

�
a+ c
b+ d

�
:

Proposition 3.1 The following matrix absorption
equations hold:

M(V) = M � V
M(N(x)) = (M �N)(x)

The following tensor absorption equations hold:

T (V; y) =

�
T L
fV if jT L

fV j = 0
(T LfV)(y) if jT LfV j 6= 0

T (M(x); y) = (T L
fM)(x; y)

T (x; V) =

�
T R
fV if jT R

fV j = 0
(T R

fV)(x) if jT R
fV j 6= 0

T (x;M(y)) = (T R
fM)(x; y):

Note that the left and right products of a tensor with
a vector may give a singular matrix, which is essentially
a vector given by its mediant.

For computing the value of T (x; y), we need a strat-
egy for deciding whether to absorb from x (left absorp-
tion) or from y (right absorption). All we know about
x and y is that they are non-negative real numbers. So,
what we need is a function strategy(T) which evaluates
to left, right or either. By convention, we choose left

absorption when we have a free choice. This enables
algorithms to be made in the knowledge that there is
a preferred absorption direction [?].

Consider the pairs of matrices in tensor T and the
pairs of matrices in tensor TT.

During left absorption the information in each of
the matrices in tensor TT is re�ned, while during right
absorption the information in each of the matrices in
tensor T is re�ned.

Absorption is more e�ective if the pair of matrices
under consideration have overlapping information be-
cause then the overall information re�nement for the
tensor is likely to be more dramatic on average. A
more important observation is that absorption eventu-
ally leads to an empty intersection of information thus
ensuring that the strategy is fair.

Let us de�ne the function overlap(T) by

overlap : T ! boolean

T 7! Info(T0) \ Info(T1) 6= ;

Given T =

�
a c e g
b d f h

�
, it can be shown that

the boolean expression

Info(T0) \ Info(T1) = ;

is equivalent to

Info

��
d �c
b �a

�
�
�

e g

f h

��
� (0;1)

It is always the case that at least one of overlap(T)
and overlap(TT) is true.

Therefore, a straightforward strategy is:

strategy(T) =

8<
:

left if not overlap(T)
either if overlap(T) and overlap(TT)
right if not overlap(TT)

The information in a 2-dimensional lft T can be rep-
resented by a 1-dimensional lft denoted by T head:

T head = [supE; inf E]

E = fTij : i; j = 0; 1 and Tij 6= (0; 0)g�
a
b

�
�
�

c
d

�
i�

���� a c
b d

���� � 0:

It can be shown that Info(T) = Info(T head). Let us
de�ne T tail = (T head)�1 � T , where matrix inversion is
de�ned by

�
a c

b d

��1
=

�
d �c
�b a

�
:

4

We choose to scale the matrix inversion by the deter-
minant in order to ensure we only get non-negative
integers in the tensor emission equation:

Proposition 3.2 The following tensor emission
equation holds:

T (x; y) = T head(T tail(x; y)):

This corresponds to the extraction of maximum in-
formation known as naive emission. There are alter-
native emission methods that are considerably more
e�cient [?, ?].

4. Continued Fractions

The development

a0 +
b0

a1 +
b1

a2 +
b2

a3 + � � �

(6)

is called a continued fraction [?, ?].
The quantity

rn = a0 +
b0

a1 +
b1

a2 + � � �+ bn�1
an

(7)

is called the nth approximant. The 0th approximant
is a0. If the sequence rn converges to a real number
r then the continued fraction is said to be convergent
and represent the number r.

Using the lft's

Mn(x) =

�
an bn
1 0

�
(x) = an +

bn
x

(8)

we can generate the continued fraction in Equation (6).
Therefore, a continued fraction with non-negative co-
e�cients corresponds to a normal product.

A survey of various mathematical functions in the
form of general normal products has been made by
Potts [?].

5. Domain Theory

We have a choice between a continuous domain and
an algebraic domain for the real numbers.

For the continuous domain, it is convenient to ex-
pand on the usual notation. Let x and y be elements of
a dcpo D. We say that x is way-below or approximates

y, denoted x � y, if for all directed subsets A of D,
y v FA implies 9a 2 A such that x v a. We say that
x is compact if it approximates itself. It can be shown
that if x� y then 9z 2 D such that x� z and z � y.

Let us de�ne "x = fy 2 D j x v yg, #x = fy 2
D j y v xg, ""x = fy 2 D j x� yg, ##x = fy 2 D j y �
xg and K(D) = fx 2 D j x is compactg.

We say that a subset B of a dcpo D is a basis for
D, if for every element x of D the set ##x \ B contains
a directed subset with supremum x.

A dcpo is called a continuous domain if it has a
basis.

A dcpo is called an algebraic domain if it has a basis
of compact elements.

Given a transitive relation � on a set B, known as
an abstract basis, A � B is an ideal if it is downward
closed (A = fb 2 B j 8a 2 A:b � ag) and directed
(8a; b 2 A:9c 2 A such that a � c and b � c). The
set of ideals is denoted (B;�). The ideal completion of
(B;�) is the set of ideals ordered by set inclusion.

5.1. A Continuous Domain for the Real Numbers

The closed intervals of R+ ordered by reverse inclu-
sion is a continuous domain ICR+ with a basis given by
the closed rational intervals IQ+ where Q+ = R+ \ Q
including in�nity. The ideal completion of the abstract
basis (IQ+ ;�) is isomorphic to the continuous domain
ICR+ . The maximal elements (singleton sets) are iden-
ti�ed with the non-negative extended real numbers.

For a continuous function f : ICR+ ! ICR+ , if y �
f(x) with y 2 IQ+ then 9z � x such that y � f(z)
with z 2 IQ+ .

5.2. An Algebraic Domain for the Real Numbers

The ideal completion of (IQ+ ;�) is an algebraic do-
main IAR+ with basis isomorphic to IQ+ .

This domain has the advantage of allowing a distinc-
tion to be made between a �nite and in�nitely repre-
sented rational number [?]. This is useful for e�ciency
reasons as we do not want to be forced to represent a
rational number by an in�nite product of matrices if it
can be avoided.

Given an interval x 2 ICR+ , let us use the notation
x = inf x, x = supx and

hxi = fy 2 IQ+ j y � x and x � yg
hxii = fy 2 IQ+ j y � x and x < yg
hhxi = fy 2 IQ+ j y < x and x � yg
hhxii = fy 2 IQ+ j y < x and x < yg

5

where 0 < 0 and 1 < 1. Note that hxi � #x and
hhxii � ##x.

In the algebraic domain, the elements hxi, hxii, hhxi
and hhxii are distinct whenever x 2 IQ+ , they provide
only two distinct elements whenever x 2 ICR+ with
one rational end-point and they are indistinguishable
whenever x 2 ICR+ with irrational end-points.

Note that the functions e : ICR+ ! IAR+ with
x 7! hhxii and p : IAR+ ! ICR+ with x 7! T

x form an
embedding/projection pair with p � e = Id and e � p v
Id.

For a continuous function f : IAR+ ! IAR+ , if y v
f(x) with y compact then 9z v x such that y v f(z)
with z compact.

6. Language for Positive Reals

The Language for Positive Reals (LPR) includes the
syntax and conventions of the Programming Language
for Computable Functions (PCF) with products de-
scribed by Gunter [?]. This in turn includes the terms
of the simply-typed �-calculus.

The context-free grammar for LPR is given in BNF
by

x 2 Variable

t ::= num j bool j I j t! t j t� t

P ::= x j 0 j true j false j
succ(P) j pred(P) j zero?(P) j
if P then P else P j
�x : t:P j PP j �x : t:P j
(P; P) j fst(P) j snd(P) j hP i

where Variable is the primitive syntax class of vari-
ables. The expressions in the syntax class over which t
ranges are called types, and those over which P ranges
are called term trees.

The types num, bool and I are called the ground
types.

Term trees of the form �x : t:P are called abstrac-
tions, and those of the form PQ are called applications.
The other constructs of PCF with products include the
successor { succ(P), predecessor { pred(P), test for
zero { zero?(P), conditional { if P then Q else R,
pairing { (P;Q), �rst projection { fst(P), second pro-
jection { snd(P) and recursion { �x : t:P . The new
construct for LPR is transformation { hP i.

The equivalence class of term trees modulo renaming
of bound variables are called just terms and we refer
to closed terms of ground type as programs. We will
use the notation [Q=x]P for substitution to indicate the
result of replacing all free occurrences of the variable

x in P by Q, making the appropriate changes in the
bound variables of P so that no free variables in Q
become bound.

For convenience, vector(t) denotes t� t, matrix(t)
denotes vector(t) � vector(t) and tensor(t) denotes
matrix(t)�matrix(t).

There are two systems of rules describing LPR.
The �rst of these determines which of the term de-

scribed by the syntax above are to be considered well-
typed. These are the terms to which we will assign a
meaning in our semantic model.

The second set of rules form the operational seman-
tics for evaluation.

6.1. Typing Rules

A type assignment is a list H � x1 : t1; x2 :
t2; : : : ; xn : tn of pairs of variables and types such that
the variables are distinct.

A typing judgement is a triple, denoted H ` P : t,
consisting of a type assignmentH , a term P and a type
t such that all the free variables of P appear in the
list H . We read this triple as \given the assignment
H , the term P has type t". It is de�ned to be the
least relation satisfying the typing rules for PCF with
products, which is well known [?], and those below:

[VecNum]
H ` V : vector(num)

H ` hV i : I
[MatNum]

H `M :matrix(num)
H ` hMi : I! I

[TenNum]
H ` T : tensor(num)
H ` hT i : I� I! I

6.2. Reduction Rules

The strategy for evaluating a program is called an
operational semantics for the language. One approach
to describing such a semantics is to indicate how a term
P evaluates to another term Q by de�ning a relation
P ! Q between terms using a set of one-step reduc-
tion rules. We de�ne the one-step reduction relation
! to be the least relation satisfying the one-step re-
duction rules for call-by-name evaluation of PCF with
products, which is well known [?], and those below:

hUniqVeci hV i ! hV �i
hUniqMati hMiP ! hM�iP
hUniqTeni hT iP ! hT �iP
hMatAbs1i hMihV i ! hM � V i
hMatAbs2i hMi(hNiP)! hM �NiP

6

hTenAbs1i jT LfV j 6= 0
hT i(hV i; P)! hT LfV iP

hTenAbs2i jT LfV j = 0

hT i(hV i; P)! hT L
fV � T L

fV i
hTenAbs3i hT i(hMiP;Q)! hT L

fMi(P;Q)
hTenAbs4i jT R

fV j 6= 0
hT i(P; hV i)! hT R

fV iP
hTenAbs5i jT RfV j = 0

hT i(P; hV i)! hT RfV � T RfV i
hTenAbs6i hT i(P; hMiQ)! hT RfMi(P;Q)
hEmissioni Info(T) 6= ?

hT i(P;Q)! hT headi(hT taili(P;Q))
hCong1i V ! W

hV i ! hW i
hCong2i M ! N P ! Q

hMiP ! hNiQ
hCong3i T ! U P ! Q

hT iP ! hUiQ

The rules hUniqVeci, hUniqMati and hUniqTeni
arise from the equivalence relation induced by scal-
ing in Equation (5). The rules hMatAbs1/2i and
hTenAbs1-6i arise from the absorption equations in
Proposition 3.1. The rule hEmissioni arises from the
emission equation in Proposition 3.2. Finally, the
transformation construct has three associated congru-
ence rules hCong1-3i.

Note that Info(T) 6= ? if one of the vectors T00, T01,
T10 and T11 is equivalent to 0 or 1.

The reduction relation !� is de�ned as the re
exive,
transitive closure of the one-step reduction relation.

We say that a term P evaluates to a value Z if P !�

Z where a value is a term generated by the following
grammar:

Z ::= 0 j true j false j succ(Z) j �x : t:P j
(Z;Z) j

�
Z
Z

�
j
�

Z Z

Z Z

�
P

Evaluation is a multi-valued function Eval from pro-
grams to values.

Eval(P) = f?g [
fn j P !� succn(0)g [
ftrue j P !� trueg [
ffalse j P !� falseg [
fInfo(V) j P !� hV ig [
fInfo(M) j P !� hMiQ for some Qg

6.3. Example

The Stieltjes type continued fraction for arctanx is
given [?, ?] by

arctanx =
x

1 +
x2

3

1 +
4x2

15

1 + � � �
This can be transformed to

arctanx =

1Y
n=0

�
0 x

(1 + n)2x 1 + 2n

�

or put another way

arctanx =�
0 1 0 0
1 0 0 1

�
(x;

�
0 1 0 0
4 0 0 3

�
(x;�

0 1 0 0
9 0 0 5

�
(x;

�
0 1 0 0
16 0 0 7

�
(x; � � �)))):

Thus, a program for arctan in LPR is

arctan = �x: (�f:�n:Iarctan(n)(x; f(n+ 1))) 0

where the arctan iterator Iarctan is

Iarctan = �n:

�
0 1 0 0

(1 + n)2 0 0 1 + 2n

�
:

7. Models

The ground types num, bool and I in the language
are interpreted by the
at domain of natural num-
bers N? = N [f1g, the
at domain of truth values
T = ftrue; false;?g and the continuous domain ICR+

or the algebraic domain IAR+ of intervals over the non-
negative extended real numbers.

We will use semantic brackets JK to distinguish be-
tween terms in the language and expressions in the
model.

Extending the standard �xed-point model relative to
call-by-name of PCF with products to LPR, the inter-
pretation JtK of a type t is a dcpo de�ned inductively
by

JnumK = N?

JboolK = T

JIK = ICR+ or IAR+

Js! tK = [JsK ! JtK]

Js� tK = JsK � JtK:

7

While a type assignment associates types with vari-
ables, an environment associates values to variables. If
H is a type assignment, then an H-environment is a
function � on variables that maps each x : t 2 H to a
value �(x) 2 JtK.

Let us use the notation JH�P : tK for the interpreta-
tion of term P relative to type assignment H and type
t. Thus JH �P : tK is a function from H-environments
to JtK de�ned by induction on the type derivation of
H ` P : t. Thus, for transformation hP i we have
JH�hP i : tK� = P in the continuous domain ICR+ and
JH�hP i : tK� = #P in the algebraic domain IAR+ . Re-
call that the P outside the semantic brackets is suppose
to represent the maximal extension of the arbitrary lft
represented by P .

8. Computational Adequacy

The following proposition is easily proved:

Proposition 8.1 (Soundness) For all programs P ,G
Eval(P) v JP K

In order to establish completeness, we consider
Plotkin's notion of computability [?] as extended by
Escard�o [?]:

De�nition 8.2 The computable terms of LPR form
the least set of terms such that

� If P is a program then P is computable whenever
JP K v FEval(P).

� If ` P : s ! t then P is computable whenever
PQ is computable for any closed computable term
Q of type s.

� If x1 : t1; x2 : t2; : : : ; xn : tn ` P : t then P is com-
putable whenever [P1; P2; : : : ; Pn=x1; x2; : : : ; xn]P
is computable for any set of closed computable
terms Pi such that ` Pi : ti.

So, we need to prove that every term is computable,
establishing Theorem 8.6 below, by extending the in-
ductive proof of Plotkin [?] with the following lemmas.
Note that the equivalent lemmas with respect to the
algebraic domain IAR+ can be derived by replacing all
instances of \x� y" by \compact x v y".

Lemma 8.3 A real program P is computable with
respect to the continuous domain ICR+ i�

8a� JP K with a 6= ?) 9b 2 Eval(P) with a v b

Lemma 8.4 hT i is computable with respect to the
continuous domain ICR+

Proof We need to show that hT iPQ is computable
if P and Q are computable. Thus, let P and Q be
computable terms and let a � JhT iPQK = T JP KJQK
with a 6= ?. By continuity of T , 9c � JP K and 9d �
JQK such that a� Tcd.

� If c = ? and d = ? then hT iPQ !
hT headi(hT tailiPQ) so let b = Info((hT headi)). But
b 2 Eval(hT iPQ) and a v b because Info(T) v
Info((T head)). Hence hT iPQ is a computable term.

� If c = ? and d 6= ? then 9f 2 Eval(Q) with d v f
because Q is a computable term.

{ If f is a singleton then 9V such that
f = Info(V) and Q !� hV i. Therefore
hT iPQ !� hT iP hV i ! hT R

fV iP . Let
b = Info((T RfV)). But b 2 Eval(hT iPQ)
and a v b because Info(T) v Info((T R

fV)).
Hence hT iPQ is a computable term.

{ If f is not a singleton then 9M such
that f = Info(M) and Q !� hMiR
for some R. Therefore hT iPQ !�

hT iP (hMiR) ! hT RfMiPR !
h(T R

fM)headi(h(T R
fM)tailiPR).

Let b = Info(((T RfM)head)). But
b 2 Eval(hT iPQ) and a v b because
Info(T) v Info(((T R

fM)head)). Hence
hT iPQ is a computable term.

� Similarly if c 6= ? and d = ?.
� If c 6= ? and d 6= ? then 9e 2 Eval(P) with c v e
and 9f 2 Eval(Q) with d v f because P and Q
are computable terms respectively.

{ If e and f are singletons then 9V such that
e = Info(V) and P !� hV i and 9W such
that f = Info(W) and Q!� hW i. Therefore
hT iPQ !� hT ihV ihW i !� hT LfV RfW i.
Let b = Info((T L

fV R
fW)). But b 2

Eval(hT iPQ) and a v b because Info(T) v
Info((T LfV RfW)). Hence hT iPQ is a com-
putable term.

{ If e is a singleton, but f is not then 9V such
that e = Info(V) and P !� hV i and 9N such
that f = Info(N) and Q !� hNiS for some
S. Therefore hT iPQ !� hT ihV i(hNiS) !�

hT L
fV R

fNiS. Let b = Info((T L
fV R

fN)).
But b 2 Eval(hT iPQ) and a v b because
Info(T) v Info((T LfV RfN)). Hence hT iPQ
is a computable term.

8

{ Similarly if f is a singleton, but e is not.

{ If e and f are not singletons then

9M such that e = Info(M) and P !� hMiR
for some R and 9N such that f = Info(N) and
Q !� hNiS for some S. Therefore hT iPQ !�

hT i(hMiR)(hNiS) !� hT L
fM R

fNiRS !�

h(T LfM RfN)headi(h(T LfM RfN)tailiRS). Let
b = Info(((T L

fM R
fN)head)). But b 2

Eval(hT iPQ) and a v b because Info(T) v
Info(((T LfM RfN)head)). Hence hT iPQ is a com-
putable term. �

Lemma 8.5 Every term P of LPR is computable.

Proof The proof is by structural induction on P .
Let � be a substitution of closed computable terms for
the free variables in P . Thus, we must show that �P
is computable.

� For P � x, 0, true, false, succ(Q), pred(Q),
zero?(Q), if Q then R else S, (Q;R), fst(Q) or
snd(Q), P is computable because it is in PCF with
products.

� For P � �x : t:Q, we must show that R � (�x :
t:�Q)P1P2 : : : Pn is computable if P1; P2; : : : ; Pn
are closed computable terms and R has ground
type s.

{ For s � num and bool, R is computable be-
cause it is in PCF with products.

{ For s � I, observe that
R ! ([P1=x](�Q))P2P3 : : : Pn �
((�[P1=x])Q)P2P3 : : : Pn, which we will
call S. But, S is computable because Q is
computable. Therefore, JRK v F

Eval(R)
because JRK = JSK,

F
Eval(R) =

F
Eval(S)

and JSK v FEval(S).

� For P � �x : t:Q, we must show that R �
SP1P2 : : : Pn where S � �x : t:�Q is computable
if P1; P2; : : : ; Pn are closed computable terms and
R has ground type s.

{ For s � num and bool, R is computable be-
cause it is in PCF with products.

{ For s � I, de�ne Sn by

S0 � �x : t:x

Sn+1 � (�x : t:�Q)Sn:

It is easy to show by induction on n that
JSK =

F
n2NJS

nK. Clearly, Sn is computable
for all n 2 N.

Let a� JRK with a 6= ?.

JRK = JSKJP1KJP2K : : : JPnK

= (
G
n2N

JSnK)JP1KJP2K : : : JPnK

=
G
n2N

(JSnKJP1KJP2K : : : JPnK)

=
G
n2N

JSnP1P2 : : : PnK

However, 9n 2 N such that
a � JSnP1P2 : : : PnK, therefore
9b 2 Eval(SnP1P2 : : : Pn) with a v b
because Sn is computable. Therefore
b 2 Eval(R) by a straightforward extension
of the Unwinding Theorem [?].

� For P � hQi, Q may be a vector, matrix or tensor.
The tensor case is proved in Lemma 8.4 and the
other two are just special cases. �

Theorem 8.6 (Completeness) For all programs
P ,

JP K v
G

Eval(P)

The soundness and completeness properties are to-
gether called the computational adequacy property.

In section 3, we de�ned a speci�c absorption strat-
egy for a tensor T (x; y) that decides whether to absorb
from x or y. This fair strategy was not incorporated
into the language LPR and so we cannot say anything
about its correctness. However, computational ade-
quacy does say that a correct strategy must exist and
that it must be fair.

9. Conclusion

In this paper, we de�ne a Language for Positive Re-
als (LPR) that incorporates a representation of the
non-negative extended real numbers based on the com-
position of linear fractional transformations with non-
negative integer coe�cients into the Programming Lan-
guage for Computable Functions (PCF) with products.
This representation allows a wide range of mathemati-
cal functions including the basic arithmetic operations
and transcendental functions to be de�ned elegantly
because of the simple connection with the rich theory
of continued fractions.

We have shown that LPR is computational adequate
with respect to both the continuous domain and the
algebraic domain of real numbers. This result means
that a mathematical proof of correctness of a recursive

9

algorithm is su�cient to conclude that a program in-
duced by it produces the correct result. In other words,
a syntactic proof for the program by appealing to the
operational semantics is unnecessary.

This framework for exact real arithmetic in R+ has
been extended to R1 by pre�xing normal products
with an arbitrary integer coe�cient lft [?]. Consider
for example the natural cover of R1 by the four inter-
vals [0;1], [1;�1], [1; 0] and [�1; 1]. Four lft's map
each of the above intervals to the interval R+ . A real
number can be located in one of the above quarters in
�nite time. Therefore, by using one of the four lft's
above, its computation can be eventually made in the
interval R+ . The Language for Positive Reals can be
extended to a language for all reals using the above
framework.

Comparison of real numbers may be implemented
using the quasi-relational comparison operator <� de-
scribed by Boehm and Cartwright [?].

Finally, we note that this framework could also be
extended to cater for interval inputs and interval out-
puts.

10

